Matching number, Hamiltonian graphs and magnetic Laplacian matrices

نویسندگان

چکیده

In this article, we relate the spectrum of discrete magnetic Laplacian (DML) on a finite simple graph with two structural properties graph: existence perfect matching and Hamiltonian cycle underlying graph. particular, give family spectral obstructions parametrised by potential for to be matchable (i.e., having matching) or cycle. We base our analysis special case preorder introduced in [8], use as control parameter.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Laplacian spectral radius of graphs with given matching number

In this paper, we show that of all graphs of order n with matching number β, the graphs with maximal spectral radius are Kn if n = 2β or 2β + 1; K2β+1 ∪Kn−2β−1 if 2β + 2 n < 3β + 2; Kβ ∨ Kn−β or K2β+1 ∪Kn−2β−1 if n = 3β + 2; Kβ ∨ Kn−β if n > 3β + 2, where Kt is the empty graph on t vertices. © 2006 Elsevier Inc. All rights reserved. AMS classification: 05C35; 05C50

متن کامل

Supereulerian graphs with small matching number and 2-connected hamiltonian claw-free graphs

Supereulerian graphs with small matching number and 2-connected hamiltonian claw-free graphs Jinquan Xu, Ping Li, Zhengke Miao, Keke Wang & Hong-Jian Lai a Department of Mathematics, HuiZhou University, HuiZhou, Guangdong 561007, China b Department of Mathematics, Beijing Jiaotong University, Beijing, China c School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu, 2211...

متن کامل

Multipartite Separability of Laplacian Matrices of Graphs

Recently, Braunstein et al. [1] introduced normalized Laplacian matrices of graphs as density matrices in quantum mechanics and studied the relationships between quantum physical properties and graph theoretical properties of the underlying graphs. We provide further results on the multipartite separability of Laplacian matrices of graphs. In particular, we identify complete bipartite graphs wh...

متن کامل

Laplacian Matrices of Graphs: A Survey

Let G be a graph on n vertices. Its Laplacian matrix is the n-by-n matrix L(G) = D(G) A(G), where A(G) is the familiar (0, 1) adjacency matrix, and D(G) is the diagonal matrix of vertex degrees. This is primarily an expository article surveying some of the many results known for Laplacian matrices. Its six sections are: Introduction, The Spectrum, The Algebraic Connectivity, Congruence and Equi...

متن کامل

The augmented Zagreb index, vertex connectivity and matching number of graphs

Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2022

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2022.02.006